Author:
Zhu Si-Yu,Kong De-Xing,Lou Sen-Yue
Abstract
The new dimensional deformation approach is proposed to generate higher-dimensional analogues of integrable systems. An arbitrary (K+1)-dimensional integrable Korteweg–de Vries (KdV) system, as an example, exhibiting symmetry, is illustrated to arise from a reconstructed deformation procedure, starting with a general symmetry integrable (1+1)-dimensional dark KdV system and its conservation laws. Physically, the dark equation systems may be related to dark matter physics. To describe nonlinear physics, both linear and nonlinear dispersions should be considered. In the original lower-dimensional integrable systems, only liner or nonlinear dispersion is included. The deformation algorithm naturally makes the model also include the linear dispersion and nonlinear dispersion.
Subject
General Physics and Astronomy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献