Lithium Ion Batteries Operated at –100 °C

Author:

Gai Jianli,Yang Jirong,Yang Wei,Li Quan,Wu Xiaodong,Li Hong

Abstract

Enabling lithium-ion batteries (LIBs) to operate in a wider temperature range, e.g., as low or high as possible or capable of both, is an urgent need and shared goal. Here we report, for the first time, a low-temperature electrolyte consisting of traditional ethylene carbonate, methyl acetate, butyronitrile solvents, and 1 M LiPF6 salt, attributed to its very low freezing point (T f = −126.3 °C) and high ion conductivity at extremely low temperatures (0.21 mS/cm at −100 °C), successfully extends the service temperature of a practical 9.6 Ah LIB down to −100 °C (49.6% capacity retention compared to that at room temperature), which is the lowest temperature reported for practical cells so far as we know, and is lower than the lowest natural temperature (−89.2 °C) recorded on earth. Meanwhile, the high-temperature performance of lithium-ion batteries is not affected. The capacity retention is 88.2% and 83.4% after 800 cycles at 25 °C and 45 °C, respectively. The progress also makes LIB a proper power supplier for space vehicles in astronautic explorations.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3