Author:
Li 李 Hui 慧,Fu 付 Yan-Lin 艳林,Li 李 Ji-Quan 继全,Wang 王 Zheng-Xiong 正汹
Abstract
Machine learning opens up new possibilities for research of plasma confinement. Specifically, models constructed using machine learning algorithms may effectively simplify the simulation process. Previous first-principles simulations could provide physics-based transport information, but not fast enough for real-time applications or plasma control. To address this issue, this study proposes SExFC, a surrogate model of the Gyro-Landau Extended Fluid Code (ExFC). As an extended version of our previous model ExFC-NN, SExFC can capture more features of transport driven by the ion temperature gradient mode and trapped electron mode, using an extended database initially generated with ExFC simulations. In addition to predicting the dominant instability, radially averaged fluxes and radial profiles of fluxes, the well-trained SExFC may also be suitable for physics-based rapid predictions that can be considered in real-time plasma control systems in the future.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献