Resonant Charge Transport Assisted by the Molecular Vibration in Single-Molecule Junction from Time-Domain ab initio Nonadiabatic Molecular Dynamics Simulations

Author:

Tian 田 Yunzhe 韫哲,Zheng 郑 Qijing 奇靖,Zhao 赵 Jin 瑾

Abstract

Using ab initio nonadiabatic molecular dynamics simulation, we study the time-dependent charge transport dynamics in a single-molecule junction formed by gold (Au) electrodes and a single benzene-1,4-dithiol (BDT) molecule. Two different types of charge transport channels are found in the simulation. One is the routine non-resonant charge transfer path, which occurs in several picoseconds. The other is activated when the electronic state of the electrodes and that of the molecule get close in energy, which is referred to as the resonant charge transport. More strikingly, the resonant charge transfer occurs in an ultrafast manner within 100 fs, which notably increases the conductance of the device. Further analysis shows that the resonant charge transport is directly assisted by the B 2 and A 1 molecular vibration modes. Our study provides atomic insights into the time-dependent charge transport dynamics in single-molecule junctions, which is important for designing highly efficient single-molecule devices.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3