Author:
Li 李 Hui 慧,Li 李 Ji-Quan 继全,Wang 王 Zheng-Xiong 正汹
Abstract
Microturbulence excited by ion temperature gradient (ITG)-dominant and trapped electron mode (TEM)-dominant instabilities is investigated by employing an extended fluid code (ExFC) based on the so-called Landau fluid model, which includes the trapped electron dynamics. Firstly, the global effect is emphasized through direct comparison of ITG and TEM instability domains based on local and global simulations. The global effect makes differences in both linear instability and nonlinear transport, including the fluxes and the structure of zonal flow. The transitions among ITG, TEM, and ITG & TEM (ITG & TEM represents that ITG and TEM coexist with different wavelengths) instabilities/turbulence depend not only on the three key drive forces (R/L
n, R/L
Te, R/L
Ti) but also on their global (profile) effects. Secondly, a lot of electrostatic linear gyro-fluid simulations are concluded to obtain a distribution of the instability.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献