Superconductivity of the FeSe/SrTiO3 Interface in View of BCS–BEC Crossover*

Author:

Zhang Shuyuan,Miao Guangyao,Guan Jiaqi,Xu Xiaofeng,Liu Bing,Yang Fang,Wang Weihua,Zhu Xuetao,Guo Jiandong

Abstract

In paired Fermi systems, strong many-body effects exhibit in the crossover regime between the Bardeen–Cooper–Schrieffer (BCS) and the Bose–Einstein condensation (BEC) limits. The concept of the BCS–BEC crossover, which is studied intensively in the research field of cold atoms, has been extended to condensed matters. Here by analyzing the typical superconductors within the BCS–BEC phase diagram, we find that FeSe-based superconductors are prone to shift their positions in the BCS–BEC crossover regime by charge doping or substrate substitution, since their Fermi energies and the superconducting gap sizes are comparable. Especially at the interface of single-layer FeSe on SrTiO 3 substrate, the superconductivity is relocated closer to the crossover unitary than other doped FeSe-based materials, indicating that the pairing interaction is effectively modulated. We further show that hole-doping can drive the interfacial system into the phase with possible pre-paired electrons, demonstrating its flexible tunability within the BCS–BEC crossover regime.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3