Author:
Wu Yanling,Yin Xia,Hasaien Jiazila,Ding Yang,Zhao Jimin
Abstract
By integrating pump-probe ultrafast spectroscopy with diamond anvil cell (DAC) technique, we demonstrate a time-resolved ultrafast dynamics study on non-equilibrium quasiparticle (QP) states in Sr
2
IrO
4
under high pressure. On-site in situ condition is realized, where both the sample and DAC have fixed position during the experiment. The QP dynamics exhibits a salient pressure-induced phonon bottleneck feature at 20 GPa, which corresponds to a gap shrinkage in the electronic structure. A structural transition is also observed at 32 GPa. In addition, the slowest relaxation component reveals possible heat diffusion or pressure-controlled local spin fluctuation associated with the gap shrinkage. Our work enables precise pressure dependence investigations of ultrafast dynamics, paving the way for reliable studies of high-pressure excited state physics.
Subject
General Physics and Astronomy
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献