Finite Temperature Magnetism in the Triangular Lattice Antiferromagnet KErTe2

Author:

Liu Weiwei,Zhang Zheng,Yan Dayu,Li Jianshu,Zhang Zhitao,Ji Jianting,Jin Feng,Shi Youguo,Zhang Qingming

Abstract

Abstract After the discovery of the ARECh2 (A=alkali or monovalent ions, RE=rare-earth, Ch= chalcogen) triangular lattice quantum spin liquid (QSL) family, a series of its oxide, sulfide, and selenide counterparts has been consistently reported and extensively investigated. While KErTe2 represents the initial synthesized telluride member, preserving its triangular spin lattice, it was anticipated that the substantial tellurium ions could impart more pronounced magnetic attributes and electronic structures to this material class. This study delves into the magnetism of KErTe2 at finite temperatures through magnetization and electron spin resonance (ESR) measurements. Based on the angular momentum Ĵ after spin-orbit coupling (SOC) and symmetry analysis, we obtain the magnetic effective Hamiltonian to describe the magnetism of Er3+ in R-3m space group. Applying the mean-field approximation to the Hamiltonian, we can simulate the magnetization and magnetic heat capacity of KErTe2 in paramagnetic state and determine the crystalline electric field (CEF) parameters and partial exchange interactions. The relatively narrow energy gaps between CEF ground state and excited states exert a significant influence on the magnetism. For example, small CEF excitations can result in a significant broadening of the ESR linewidth at 2 K. For the fitted exchange interactions, although the values are small, given a large angular momentum J = 15/2 after SOC, they still have a noticeable effect at finite temperatures. Notably, the heat capacity data under different magnetic fields along the c-axis direction also roughly match our calculated results, further validating the reliability of our analytical approach. These derived parameters serve as crucial tools for future investigations into the ground state magnetism of KErTe2. The findings presented herein lay a foundation for the exploration of the intricate magnetism within the triangular-lattice delafossite family.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3