Multiple Soliton Asymptotics in a Spin-1 Bose–Einstein Condensate

Author:

Lan 兰 Zhong-Zhou 中周

Abstract

Abstract Spinor Bose–Einstein condensates (BECs) are formed when atoms in the multi-component BECs possess single hyperfine spin states but retain internal spin degrees of freedom. This study concentrates on a (1+1)-dimensional three-couple Gross–Pitaevskii system to depict the macroscopic spinor BEC waves within the mean-field approximation. Regarding the distribution of the atoms corresponding to the three vertical spin projections, a known binary Darboux transformation is utilized to derive the N matter-wave soliton solutions and triple-pole matter-wave soliton solutions on the zero background, where N is a positive integer. For those multiple matter-wave solitons, the asymptotic analysis is performed to obtain the algebraic expressions of the soliton components in the N matter-wave solitons and triple-pole matter-wave solitons. The asymptotic results indicate that the matter-wave solitons in the spinor BECs possess the property of maintaining their energy content and coherence during the propagation and interactions. Particularly, in the N matter-wave solitons, each soliton component contributes to the phase shifts of the other soliton components; and in the triple-pole matter-wave solitons, stable attractive forces exist between the different matter-wave soliton components. Those multiple matter-wave solitons are graphically illustrated through three-dimensional plots, density plot and contour plot, which are consistent with the asymptotic analysis results. The present analysis may provide the explanations for the complex natural mechanisms of the matter waves in the spinor BECs, and may have potential applications in designs of atom lasers, atom interferometry and coherent atom transport.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3