Twin-Capture Rydberg State Excitation Enhanced with Few-Cycle Laser Pulses

Author:

Zhao 赵 Jing 晶,Liu 刘 Jinlei 金磊,Wang 王 Xiaowei 小伟,Zhao 赵 Zengxiu 增秀

Abstract

Quantum excitation is usually regarded as a transient process occurring instantaneously, leaving the underlying physics shrouded in mystery. Recent research shows that Rydberg-state excitation with ultrashort laser pulses can be investigated and manipulated with state-of-the-art few-cycle pulses. We theoretically find that the efficiency of Rydberg state excitation can be enhanced with a short laser pulse and modulated by varying the laser intensities. We also uncover new facets of the excitation dynamics, including the launching of an electron wave packet through strong-field ionization, the re-entry of the electron into the atomic potential and the crucial step where the electron makes a U-turn, resulting in twin captures into Rydberg orbitals. By tuning the laser intensity, we show that the excitation of the Rydberg state can be coherently controlled on a sub-optical-cycle timescale. Our work paves the way toward ultrafast control and coherent manipulation of Rydberg states, thus benefiting Rydberg-state-based quantum technology.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3