Author:
Gao Qiang,Zhao Lin,Hu Cheng,Yan Hongtao,Chen Hao,Cai Yongqing,Li Cong,Ai Ping,Liu Jing,Huang Jianwei,Rong Hongtao,Song Chunyao,Yin Chaohui,Wang Qingyan,Huang Yuan,Liu Guo-Dong,Xu Zu-Yan,Zhou Xing-Jiang
Abstract
High temperature superconductivity in cuprates is realized by doping the Mott insulator with charge carriers. A central issue is how such an insulating state can evolve into a conducting or superconducting state when charge carriers are introduced. Here, by in situ vacuum annealing and Rb deposition on the Bi2Sr2Ca0.6Dy0.4Cu2O8 + δ
(Bi2212) sample surface to push its doping level continuously from deeply underdoped (T
c = 25 K, doping level p ∼ 0.066) to the near-zero doping parent Mott insulator, angle-resolved photoemission spectroscopy measurements are carried out to observe the detailed electronic structure evolution in the lightly hole-doped region for the first time. Our results indicate that the chemical potential lies at about l eV above the charge transfer band for the parent state at zero doping, which is quite close to the upper Hubbard band. With increasing hole doping, the chemical potential moves continuously towards the charge transfer band and the band structure evolution exhibits a rigid band shift-like behavior. When the chemical potential approaches the charge transfer band at a doping level of ∼0.05, the nodal spectral weight near the Fermi level increases, followed by the emergence of the coherent quasiparticle peak and the insulator–superconductor transition. Our observations provide key insights in understanding the insulator–superconductor transition in doping the parent cuprate compound and for establishing related theories.
Subject
General Physics and Astronomy
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献