Author:
Lu 鲁 Zheng-Yu 征宇,Chen 陈 Le-Tian 乐添,Hu 胡 Xu 绪,Chen 陈 Su-Ya 素雅,Zhang 张 Xu 旭,Zhou 周 Zhen 震
Abstract
Compared with conventional solid-state electrolytes, halide solid-state electrolytes have several advantages such as a wider electrochemical window, better compatibility with oxide cathode materials, improved air stability, and easier preparation conditions making them conductive to industrial production. We concentrate on a typical halide solid-state electrolyte, Li3InCl6, predict the most stable structure after doping with Br, F, and Ga by using the Alloy Theoretic Automated Toolkit based on first-principles calculations, and verify the accuracy of the prediction model. To investigate the potential of three equivalently doped ground state configurations of Li3InCl6 as solid-state electrolytes for all-solid-state lithium-ion batteries, their specific properties such as crystal structure, band gap, convex packing energy, electrochemical stability window, and lithium-ion conductivity are computationally analyzed using first-principles calculations. After a comprehensive evaluation, it is determined that the F-doped ground state configuration Li3InCl2.5F3.5 exhibits better thermal stability, wider electrochemical stability window, and better lithium ion conductivity (1.80 mS⋅cm−1 at room temperature). Therefore, Li3InCl2.5F3.5 has the potential to be used in the field of all-solid-state lithium-ion batteries as a new type of halide electrolyte.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献