A comparative study of RIFCM with other related algorithms from their suitability in analysis of satellite images using other supporting techniques

Author:

Purushotham Swarnalatha,Tripathy Balakrishna

Abstract

Purpose – The purpose of this paper is to provide a way to analyze satellite images using various clustering algorithms and refined bitplane methods with other supporting techniques to prove the superiority of RIFCM. Design/methodology/approach – A comparative study has been carried out using RIFCM with other related algorithms from their suitability in analysis of satellite images with other supporting techniques which segments the images for further process for the benefit of societal problems. Four images were selected dealing with hills, freshwater, freshwatervally and drought satellite images. Findings – The superiority of the proposed algorithm, RIFCM with refined bitplane towards other clustering techniques with other supporting methods clustering, has been found and as such the comparison, has been made by applying four metrics (Otsu (Max-Min), PSNR and RMSE (40%-60%-Min-Max), histogram analysis (Max-Max), DB index and D index (Max-Min)) and proved that the RIFCM algorithm with refined bitplane yielded robust results with efficient performance, reduction in the metrics and time complexity of depth computation of satellite images for further process of an image. Practical implications – For better clustering of satellite images like lands, hills, freshwater, freshwatervalley, drought, etc. of satellite images is an achievement. Originality/value – The existing system extends the novel framework to provide a more explicit way to analyze an image by removing distortions with refined bitplane slicing using the proposed algorithm of rough intuitionistic fuzzy c-means to show the superiority of RIFCM.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3