Author:
Gupta Arpita,Priyani Saloni,Balakrishnan Ramadoss
Abstract
Purpose
In this study, the authors have used the customer reviews of books and movies in natural language for the purpose of sentiment analysis and reputation generation on the reviews. Most of the existing work has performed sentiment analysis and reputation generation on the reviews by using single classification models and considered other attributes for reputation generation.
Design/methodology/approach
The authors have taken review, helpfulness and rating into consideration. In this paper, the authors have performed sentiment analysis for extracting the probability of the review belonging to a class, which is further used for generating the sentiment score and reputation of the review. The authors have used pre-trained BERT fine-tuned for sentiment analysis on movie and book reviews separately.
Findings
In this study, the authors have also combined the three models (BERT, Naïve Bayes and SVM) for more accurate sentiment classification and reputation generation, which has outperformed the best BERT model in this study. They have achieved the best accuracy of 91.2% for the movie review data set and 89.4% for the book review data set which is better than the existing state-of-art methods. They have used the transfer learning concept in deep learning where you take knowledge gained from one problem and apply it to a similar problem.
Originality/value
The authors have proposed a novel model based on combination of three classification models, which has outperformed the existing state-of-art methods. To the best of the authors’ knowledge, there is no existing model which combines three models for sentiment score calculation and reputation generation for the book review data set.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献