Customized reputation generation of entities using sentiment analysis

Author:

Gupta Arpita,Priyani Saloni,Balakrishnan Ramadoss

Abstract

Purpose In this study, the authors have used the customer reviews of books and movies in natural language for the purpose of sentiment analysis and reputation generation on the reviews. Most of the existing work has performed sentiment analysis and reputation generation on the reviews by using single classification models and considered other attributes for reputation generation. Design/methodology/approach The authors have taken review, helpfulness and rating into consideration. In this paper, the authors have performed sentiment analysis for extracting the probability of the review belonging to a class, which is further used for generating the sentiment score and reputation of the review. The authors have used pre-trained BERT fine-tuned for sentiment analysis on movie and book reviews separately. Findings In this study, the authors have also combined the three models (BERT, Naïve Bayes and SVM) for more accurate sentiment classification and reputation generation, which has outperformed the best BERT model in this study. They have achieved the best accuracy of 91.2% for the movie review data set and 89.4% for the book review data set which is better than the existing state-of-art methods. They have used the transfer learning concept in deep learning where you take knowledge gained from one problem and apply it to a similar problem. Originality/value The authors have proposed a novel model based on combination of three classification models, which has outperformed the existing state-of-art methods. To the best of the authors’ knowledge, there is no existing model which combines three models for sentiment score calculation and reputation generation for the book review data set.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference41 articles.

1. Comprehensive study on lexicon-based ensemble classification sentiment analysis;Entropy,2016

2. Investigation of recurrent neural networks in the field of sentiment analysis,2017

3. An unsupervised approach for reputation generation;Procedia Computer Science,2019

4. Aggregating customer review attributes for online reputation generation;IEEE Access,2020

5. A hybrid approach for generating reputation based on opinions fusion and sentiment analysis;Journal of Organizational Computing and Electronic Commerce,2020

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3