Full-state modeling and nonlinear control of balloon supported unmanned aerial vehicle

Author:

Mazhar Naveed,Malik Fahad Mumtaz,Azim Raja Amer,Raza Abid,Khan Rameez,Khan Qasim Umar

Abstract

Purpose The purpose of this study is to provide the full-state mathematical model and devise a nonlinear controller for a balloon-supported unmanned aerial vehicle (BUAV). Design/methodology/approach Newtonian mechanics is used to establish the nonlinear mathematical model of the proposed vehicle assembly which incorporates the dynamics of both balloon and quadrotor UAV. A controllable form of the nine degrees of freedom model is derived. Backstepping control is designed for the proposed model and simulations are performed to assess the tracking performance of the proposed control. Findings The results show that the proposed methodology works well for smooth trajectories in presence of wind gusts. Moreover, the final mathematical model is affine and various nonlinear control techniques can be used in the future for improved system performance. Originality/value Multi-rotor unmanned aerial vehicles (MUAVs) are equipped with controllers but are constrained by smaller flight endurance and payload carrying capability. On the contrary, lighter than air (LTA) aerial vehicles have longer flight times but have poor control performance for outdoor operations. One of the solutions to achieve better flight endurance and payload carrying capability is to augment the LTA balloon to MUAV. The novelty of this research lies in full-order mathematical modeling along with transformation to controllable form for the BUAV assembly.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference35 articles.

1. Sliding mode control for quadrotor with disturbance observer;Advances in Mechanical Engineering,2018

2. Disturbance observer based tracking control of quadrotor with high-order disturbances;IEEE Access,2020

3. Part 1: robust adaptive control of quadrotor with disturbance observer;Aircraft Engineering and Aerospace Technology,2021

4. Modelling multi-rotor UAVs swarm deployment using virtual pheromones;PloS One,2018

5. Projection modification based robust adaptive backstepping control for multipurpose quadcopter UAV;IEEE Access,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3