ACD3GPSO: automatic clustering-based algorithm for multi-robot task allocation using dynamic distributed double-guided particle swarm optimization

Author:

Ayari Asma,Bouamama Sadok

Abstract

Purpose The multi-robot task allocation (MRTA) problem is a challenging issue in the robotics area with plentiful practical applications. Expanding the number of tasks and robots increases the size of the state space significantly and influences the performance of the MRTA. As this process requires high computational time, this paper aims to describe a technique that minimizes the size of the explored state space, by partitioning the tasks into clusters. In this paper, the authors address the problem of MRTA by putting forward a new automatic clustering algorithm of the robots' tasks based on a dynamic-distributed double-guided particle swarm optimization, namely, ACD3GPSO. Design/methodology/approach This approach is made out of two phases: phase I groups the tasks into clusters using the ACD3GPSO algorithm and phase II allocates the robots to the clusters. Four factors are introduced in ACD3GPSO for better results. First, ACD3GPSO uses the k-means algorithm as a means to improve the initial generation of particles. The second factor is the distribution using the multi-agent approach to reduce the run time. The third one is the diversification introduced by two local optimum detectors LODpBest and LODgBest. The last one is based on the concept of templates and guidance probability Pguid. Findings Computational experiments were carried out to prove the effectiveness of this approach. It is compared against two state-of-the-art solutions of the MRTA and against two evolutionary methods under five different numerical simulations. The simulation results confirm that the proposed method is highly competitive in terms of the clustering time, clustering cost and MRTA time. Practical implications The proposed algorithm is quite useful for real-world applications, especially the scenarios involving a high number of robots and tasks. Originality/value In this methodology, owing to the ACD3GPSO algorithm, task allocation's run time has diminished. Therefore, the proposed method can be considered as a vital alternative in the field of MRTA with growing numbers of both robots and tasks. In PSO, stagnation and local optima issues are avoided by adding assorted variety to the population, without losing its fast convergence.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Traveling of multiple salesmen to dynamically changing locations for satisfying multiple goals;Digital Chemical Engineering;2024-06

2. Visual navigation method for agricultural mobile robots based on spatial continuity clustering algorithm;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-02-03

3. Evolutionary Swarm Robotics: A Methodological Approach For Task and Path Planning;2023 IEEE Afro-Mediterranean Conference on Artificial Intelligence (AMCAI);2023-12-13

4. Cooperative Artificial Intelligence for underwater robotic swarm;Robotics and Autonomous Systems;2023-06

5. Design and Optimization of Electric Automation Control System for Large Machinery Based on Grey Clustering Algorithm;2023 Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC);2023-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3