Comparative study of linear and quadratic model equations for prediction and evaluation of surface roughness of a plain-woven fabric

Author:

Beyene Kura Alemayehu

Abstract

Purpose Modeling helps to determine how structural parameters of fabric affect the surface of a fabric and also identify the way they influence fabric properties. Moreover, it helps to estimate and evaluate without the complexity and time-consuming experimental procedures. The purpose of this study is to develop and select the best regression model equations for the prediction and evaluation of surface roughness of plain-woven fabrics. Design/methodology/approach In this study, a linear and quadratic regression model was developed for the prediction and evaluation of surface roughness of plain-woven fabrics, and the capability in accuracy and reliability of the two-model equation was determined by the root mean square error (RMSE). The Design-Expert AE11 software was used for developing the two model equations and analysis of variance “ANOVA.” The count and density were used for developing linear model equation one “SMD1” as well as for quadratic model equation two “SMD2.” Findings From results and findings, the effects of count and density and their interactions on the roughness of plain-woven fabric were found statistically significant for both linear and quadratic models at a confidence interval of 95%. The count has a positive correlation with surface roughness, while density has a negative correlation. The correlations revealed that models were strongly correlated at a confidence interval of 95% with adjusted R² of 0.8483 and R² of 0.9079, respectively. The RMSE values of the quadratic model equation and linear model equation were 0.1596 and 0.0747, respectively. Originality/value Thus, the quadratic model equation has better capability accuracy and reliability in predictions and evaluations of surface roughness than a linear model. These models can be used to select a suitable fabric for various end applications, and it was also used for tests and predicts surface roughness of plain-woven fabrics. The regression model helps to reduce the gap between the subjective and objective surface roughness measurement methods.

Publisher

Emerald

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Business and International Management

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Appraisal of hand value of denim fabrics;Research Journal of Textile and Apparel;2023-04-13

2. Linear Model Equation for Prediction and Evaluation of Surface Roughness of Plain-Woven Fabric;TEKSTİL VE KONFEKSİYON;2022-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3