Hybrid lighting approach to improve interior workspace environments: a case study in the UAE

Author:

Al Kailani Mohammed,Al Dhaheri Aysha,Sheta WaelORCID

Abstract

PurposeInterior workspace environments use exclusively artificial light, resulting in a loss of biological connection and natural light quality, as well as greater energy consumption. The purpose of the study is to identify a suitable system that can provide natural light to such interior spaces throughout the day while supplementing it with artificial light when necessary. The fundamental aim is to provide insights into the most effective solutions for energy-efficient lighting design in the UAE's environment, with the potential to lower energy consumption related to interior lighting.Design/methodology/approachThe study adopted an empirical approach to gather and analyze primary data based on field measurements to understand and assess existing lighting conditions, as well as DIALux lighting simulation software to test the efficacy of the proposed HLS in terms of natural light delivery, illumination quality and energy consumption. A branch of a local bank in the United Arab Emirates, situated inside one of the shopping malls where there is no natural light penetration, has been chosen as a case study.FindingsThe findings of comparing the base case to four probable scenarios that used HLS revealed that the third scenario, which uses 100% pure sunshine and 35% artificial LED light during daylight operations and 100% LED light during night duty, is considered to be optimal in terms of illumination quality and energy efficiency.Originality/valueThe study demonstrated the potential of innovative lighting to improve the visual working environment in interior spaces with limited access to direct natural lighting, especially in arid regions, where sunlight is plentiful throughout the year. The study contributes new insights into the establishment of lighting-related recommendations and standards for the UAE context. This may include advice for sustainable construction practices, lighting guidelines or incentives to encourage the use of hybrid lighting technology in commercial and institutional buildings.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3