Human activity detection using machine learning methods from wearable sensors

Author:

Randhawa Princy,Shanthagiri Vijay,Kumar Ajay,Yadav Vinod

Abstract

PurposeThe paper aims to develop a novel method for the classification of different physical activities of a human being, using fabric sensors. This method focuses mainly on classifying the physical activity between normal action and violent attack on a victim and verifies its validity.Design/methodology/approachThe system is realized as a protective jacket that can be worn by the subject. Stretch sensors, pressure sensors and a 9 degree of freedom accelerometer are strategically woven on the jacket. The jacket has an internal bus system made of conductive fabric that connects the sensors to the Flora chip, which acts as the data acquisition unit for the data generated. Different activities such as still, standing up, walking, twist-jump-turn, dancing and violent action are performed. The jacket in this study is worn by a healthy subject. The main phases which describe the activity recognition method undertaken in this study are the placement of sensors, pre-processing of data and deploying machine learning models for classification.FindingsThe effectiveness of the method was validated in a controlled environment. Certain challenges are also faced in building the experimental setup for the collection of data from the hardware. The most tedious challenge is to collect the data without noise and error, created by voltage fluctuations when stretched. The results show that the support vector machine classifier can classify different activities and is able to differentiate normal action and violent attacks with an accuracy of 98.8%, which is superior to other methods and algorithms.Practical implicationsThis study leads to an understanding of human physical movement under violent activity. The results show that data compared with normal physical motion, which includes even a form of dance is quite different from the data collected during violent physical motion. This jacket construction with woven sensors can capture every dimension of the physical motion adding features to the data on which the machine learning model will be built.Originality/valueUnlike other studies, where sensors are placed on isolated parts of the body, in this study, the fabric sensors are woven into the fabric itself to collect the data and to achieve maximum accuracy instead of using isolated wearable sensors. This method, together with a fabric pressure and stretch sensors, can provide key data and accurate feedback information when the victim is being attacked or is in a normal state of action.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference76 articles.

1. Wigest: a ubiquitous wifi-based gesture recognition system,2015

2. Human motion analysis: a review;Computer Vision and Image Understanding,1999

3. Sensor positioning for activity recognition using wearable accelerometers;IEEE Transactions on Biomedical Circuits and Systems,2011

4. Physical human activity recognition using wearable sensors;Sensors,2015

5. Activity recognition from user-annotated acceleration data,2004

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3