Modelling the yield of 8.64 kW PV panels installed on a rooftop of a building in the Kingdom of Bahrain

Author:

Alnaser Naser Waheeb,Alnaser Waheeb EssaORCID

Abstract

PurposeThis paper allows more accurate estimation of the economy in investing in PV electrification for buildings, especially for Gulf Cooperation Council Countries (GCCC) where they have nearly similar climate and building structure. The actual solar electricity yield from this building is used to make empirical modelling.Design/methodology/approachThe accurate automated daily-recorded solar electricity from 8.64 kW solar PV on a rooftop of Sadeem Building at Awali, Bahrain, was modelled to polynomial equations of order of 6. The effect of the tilt (β) and azimuth (Ψ) angle of PV panels for smart and sustainable buildings is studied.FindingsThe correlation of each set of polynomial equation (R2) is listed and had reached a highest value of 0.9792 (for order of 6) with lowest value of 0.1853 (for order of 1). The model may be also applied to the GCCC. The results show that each kW of PV will have a solar electricity yield, on average, of 4.1 kWh. It also shows that the tilt angle has little influence on the solar electricity yield (less than 10%) when the tilt angle changed from 26° to 0° or from 26° to 50°. The influence of the azimuth angle is found to be more than 50% in changing Ψ from 90° to 180°.Research limitations/implicationsThe model may not be restricted to Bahrain but applies – to a certain extent – to GCCC (six countries) and to other countries having buildings with similar roof design and at latitude close to the latitude of Bahrain.Practical implicationsThe model enables developers and investors to estimate, with high accuracy, the solar electricity provided from a building if PV panels are to be installed on its rooftop (or facade) at different tilt (β) and azimuth (Ψ) angle for smart and sustainable buildings.Social implicationsEmpirically finding out how much each kW of solar PV integrated to the building will produce solar energy electricity (in kWh), that is, 1 kW of PV yield, on average, 4.1 kWh.Originality/valueEstablishing empirical models to evaluate the outcome of each installed kW of PV panels. Each 1 kW installation of PV panels is 4.0 kWh/day, on average. This is less than what commercial companies claim for this region, that is, 1 kW produces 5.5 kWh/ day – which affects the estimated economic outcome of PV projects.

Publisher

Emerald

Subject

Management, Monitoring, Policy and Law,Urban Studies,Building and Construction,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering,Human Factors and Ergonomics

Reference39 articles.

1. Growing energy demand in the GCC countries;Arab Journal of Basic and Applied Sciences,2019

2. Performance evaluation of photovoltaic systems on Kuwaiti schools' rooftop;Energy Conversion and Management,2015

3. Investigating the feasibility of solar photovoltaic systems in Kuwait,2017

4. A performance study of fixed, single-axis and dual-axis photovoltaic systems in Kuwait;World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering,2016

5. Performance analysis of rooftop PV systems in Abu Dhabi;Energy Procedia,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3