What drives the real estate market? Could behavioral indicators be useful in house pricing models?

Author:

Vasileiou EvangelosORCID,Hadad ElroiORCID,Melekos GeorgiosORCID

Abstract

PurposeThe objective of this paper is to examine the determinants of the Greek house market during the period 2006–2022 using not only economic variables but also behavioral variables, taking advantage of available information on the volume of Google searches. In order to quantify the behavioral variables, we implement a Python code using the Pytrends 4.9.2 library.Design/methodology/approachIn our study, we assert that models relying solely on economic variables, such as GDP growth, mortgage interest rates and inflation, may lack precision compared to those that integrate behavioral indicators. Recognizing the importance of behavioral insights, we incorporate Google Trends data as a key behavioral indicator, aiming to enhance our understanding of market dynamics by capturing online interest in Greek real estate through searches related to house prices, sales and related topics. To quantify our behavioral indicators, we utilize a Python code leveraging Pytrends, enabling us to extract relevant queries for global and local searches. We employ the EGARCH(1,1) model on the Greek house price index, testing several macroeconomic variables alongside our Google Trends indexes to explain housing returns.FindingsOur findings show that in some cases the relationship between economic variables, such as inflation and mortgage rates, and house prices is not always consistent with the theory because we should highlight the special conditions of the examined country. The country of our sample, Greece, presents the special case of a country with severe sovereign debt issues, which at the same time has the privilege to have a strong currency and the support and the obligations of being an EU/EMU member.Practical implicationsThe results suggest that Google Trends can be a valuable tool for academics and practitioners in order to understand what drives house prices. However, further research should be carried out on this topic, for example, causality relationships, to gain deeper insight into the possibilities and limitations of using such tools in analyzing housing market trends.Originality/valueThis is the first paper, to the best of our knowledge, that examines the benefits of Google Trends in studying the Greek house market.

Publisher

Emerald

Reference68 articles.

1. Overoptimism and house price bubbles;Journal of Macroeconomics,2018

2. Bubbles in metropolitan housing markets;Journal of Housing Research,1996

3. Explaining spatial variation in housing construction activity in Turkey;International Journal of Strategic Property Management,2018

4. Sentimental shocks and house prices;The Journal of Real Estate Finance and Economics,2023

5. Sentimental Shocks and House Prices

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3