Abstract
PurposeWarranty service plays a critical role in sustainability and service continuity and influences customer satisfaction. Considering the role of social networks in customer feedback channels, one of the essential sources to examine the reflection of a product/service is social media mining. This paper aims to identify the frequent product failures through social network mining. Focusing on social media data as a comprehensive and online source to detect warranty issues reveals opportunities for improvement, such as user problems and necessities. This model will detect the causes of defects and prioritize improving components in a product-service system based on FMEA results.Design/methodology/approachOntology-based methods, text mining and sentiment analysis with machine learning methods are performed on social media data to investigate product defects, symptoms and the relationship between warranty plans and customer behaviour. Also, the authors have incorporated multi-source data collection to cover all the possibilities. Then the authors promote a decision support system to help the decision-makers using the FMEA process have a more comprehensive insight through customer feedback. Finally, to validate the accuracy and reliability of the results, the authors used the operational data of a LENOVO laptop from a warranty service centre and classifier performance metrics to compare the authors’ results.FindingsThis study confirms the validity of social media data in detecting customer sentiments and discovering the most defective components and failures of the products/services. In other words, the informative threads are derived through a data preparation process and then are based on analyzing the different features of a failure (issues, symptoms, causes, components, solutions). Using social media data helps gain more accurate online information due to the limitation of warranty periods. In other words, using social media data broadens the scope of data gathering and lets in all feedback from different sources to recognize improvement opportunities.Originality/valueThis work contributes a DSS model using multi-channel social media mining through supervised machine learning for warranty-service improvement based on defect-related discovery to unravel the potential aspects of social networks analysis to predict the most vulnerable components of a product and the main causes of failures that lead to the inputs for the FMEA process and then, a cost optimization. The authors have used social media channels like Twitter, Facebook, Reddit, LENOVO Forums, GitHub, Quora and XDA-Developers to gather data about the LENOVO laptop failures as a case study.
Subject
Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems
Reference52 articles.
1. An integrated text analytic framework for product defect discovery;Production and Operations Management Society,2014
2. Stochastic simulation-optimization model for base warranty and extended warranty decision making of under and out of warranty products;Reliability Engineering and System Safety,2020
3. A decision support system based on ontology and data mining to improve design using warranty data;Computers and Industrial Engineering,2018
4. Text mining and social media: when quantitative meets qualitative and software meets people;Innovations in Digital Research Methods,2015
5. Optimizing a warranty–based sustainable product service system using game theory;International Journal of Sustainable Engineering,2017
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献