Forecasting container throughput with long short-term memory networks

Author:

Shankar Sonali,Ilavarasan P. Vigneswara,Punia Sushil,Singh Surya PrakashORCID

Abstract

Purpose Better forecasting always leads to better management and planning of the operations. The container throughput data are complex and often have multiple seasonality. This makes it difficult to forecast accurately. The purpose of this paper is to forecast container throughput using deep learning methods and benchmark its performance over other traditional time-series methods. Design/methodology/approach In this study, long short-term memory (LSTM) networks are implemented to forecast container throughput. The container throughput data of the Port of Singapore are used for empirical analysis. The forecasting performance of the LSTM model is compared with seven different time-series forecasting methods, namely, autoregressive integrated moving average (ARIMA), simple exponential smoothing, Holt–Winter’s, error-trend-seasonality, trigonometric regressors (TBATS), neural network (NN) and ARIMA + NN. The relative error matrix is used to analyze the performance of the different models with respect to bias, accuracy and uncertainty. Findings The results showed that LSTM outperformed all other benchmark methods. From a statistical perspective, the Diebold–Mariano test is also conducted to further substantiate better forecasting performance of LSTM over other counterpart methods. Originality/value The proposed study is a contribution to the literature on the container throughput forecasting and adds value to the supply chain theory of forecasting. Second, this study explained the architecture of the deep-learning-based LSTM method and discussed in detail the steps to implement it.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3