Business environmental analysis for textual data using data mining and sentence-level classification

Author:

Kim Yoon-Sung,Rim Hae-Chang,Lee Do-Gil

Abstract

Purpose The purpose of this paper is to propose a methodology to analyze a large amount of unstructured textual data into categories of business environmental analysis frameworks. Design/methodology/approach This paper uses machine learning to classify a vast amount of unstructured textual data by category of business environmental analysis framework. Generally, it is difficult to produce high quality and massive training data for machine-learning-based system in terms of cost. Semi-supervised learning techniques are used to improve the classification performance. Additionally, the lack of feature problem that traditional classification systems have suffered is resolved by applying semantic features by utilizing word embedding, a new technique in text mining. Findings The proposed methodology can be used for various business environmental analyses and the system is fully automated in both the training and classifying phases. Semi-supervised learning can solve the problems with insufficient training data. The proposed semantic features can be helpful for improving traditional classification systems. Research limitations/implications This paper focuses on classifying sentences that contain the information of business environmental analysis in large amount of documents. However, the proposed methodology has a limitation on the advanced analyses which can directly help managers establish strategies, since it does not summarize the environmental variables that are implied in the classified sentences. Using the advanced summarization and recommendation techniques could extract the environmental variables among the sentences, and they can assist managers to establish effective strategies. Originality/value The feature selection technique developed in this paper has not been used in traditional systems for business and industry, so that the whole process can be fully automated. It also demonstrates practicality so that it can be applied to various business environmental analysis frameworks. In addition, the system is more economical than traditional systems because of semi-supervised learning, and can resolve the lack of feature problem that traditional systems suffer. This work is valuable for analyzing environmental factors and establishing strategies for companies.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems

Reference59 articles.

1. Mining association rules between sets of items in large databases;ACM SIGMOD Record,1993

2. Extracting failure time data from industrial maintenance records using text mining;Advanced Engineering Informatics,2016

3. Robust sentiment detection on twitter from biased and noisy data,2010

4. A neural probabilistic language model;Journal of Machine Learning Research,2003

5. Classifying sentiment in microblogs: is brevity an advantage?,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3