A review of slicing methods for directed energy deposition based additive manufacturing

Author:

Xu Jing,Gu Xizhi,Ding Donghong,Pan Zengxi,Chen Ken

Abstract

Purpose The purpose of this paper is to systematically review the published slicing methods for additive manufacturing (AM), especially the multi-direction and non-layerwise slicing methods, which are particularly suitable for the directed energy deposition (DED) process to improve the surface quality and eliminate the usage of support structures. Design/methodology/approach In this paper, the published slicing methods are clarified into three categories: the traditional slicing methods (e.g. the basic and adaptive slicing methods) performed in the powder bed fusion (PBF) system, the multi-direction slicing methods and non-layerwise slicing methods used in DED systems. The traditional slicing methods are reviewed only briefly because a review article already exists for them, and the latter two slicing methods are reviewed comprehensively with further discussion and outlook. Findings A few traditional slicing approaches were developed in the literature, including basic and adaptive slicing methods. These methods are efficient and robust when they are performed in the PBF system. However, they are retarded in the DED process because costly support structures are required to sustain overhanging parts and their surface quality and contour accuracy are not satisfactory. This limitation has led to the development of various multi-direction and non-layerwise slicing methods to improve the surface quality and enable the production of overhangs with minimum supports. Originality/value An original review of the AM slicing methods is provided in this paper. For the traditional slicing methods and the multi-direction and non-layerwise slicing method, the published slicing strategies are discussed and compared. Recommendations for future slicing work are also provided.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference67 articles.

1. Direct selective laser sintering of metals;Rapid Prototyping Journal,1995

2. Ceramic components manufacturing by selective laser sintering;Applied Surface Science,2007

3. A review on powder bed fusion technology of metal additive manufacturing,2014

4. Topology optimization for additive manufacturing,2011

5. Selective laser melting;Laser Technik Journal,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3