Author:
Naesstroem Himani,Brueckner Frank,Kaplan Alexander F.H.
Abstract
Purpose
This paper aims to gain an understanding of the behaviour of iron ore when melted by a laser beam in a continuous manner. This fundamental knowledge is essential to further develop additive manufacturing routes such as production of low cost parts and in-situ reduction of the ore during processing.
Design/methodology/approach
Blown powder directed energy deposition was used as the processing method. The process was observed through high-speed imaging, and computed tomography was used to analyse the specimens.
Findings
The experimental trials give preliminary results showing potential for the processability of iron ore for additive manufacturing. A large and stable melt pool is formed in spite of the inhomogeneous material used. Single and multilayer tracks could be deposited. Although smooth and even on the surface, the single layer tracks displayed porosity. In case of multilayered tracks, delamination from the substrate material and deformation can be seen. High-speed videos of the process reveal various process phenomena such as melting of ore powder during feeding, cloud formation, melt pool size, melt flow and spatter formation.
Originality/value
Very little literature is available that studies the possible use of ore in additive manufacturing. Although the process studied here is not industrially useable as is, it is a step towards processing cheap unprocessed material with a laser beam.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献