Effects of layer thickness in laser-powder bed fusion of 420 stainless steel

Author:

Nath Subrata Deb,Gupta Gautam,Kearns Martin,Gulsoy Ozkan,Atre Sundar V.

Abstract

Purpose The purpose of this paper is to investigate effects of layer thickness on densification, surface morphology, microstructure and mechanical and corrosion properties of 420 stainless steel fabricated by laser-powder bed fusion (L-PBF). Design/methodology/approach Standard specimens were printed at layer thickness of 10, 20 and 30 µm to characterize Archimedes density, surface roughness, tensile strength, elongation, hardness, microstructural phases and corrosion performance in the as-printed and heat-treated condition. Findings Archimedes density slightly increased from 7.67 ± 0.02 to 7.70 ± 0.02g/cm3 and notably decreased to 7.35 ± 0.05 g/cm3 as the layer thickness was changed from 20 µm to 10 and 30 µm, respectively. The sensitivity to layer thickness variation was also evident in properties, the ultimate tensile strength of as-printed parts increased from 1050 ± 25 MPa to 1130 ± 35 MPa and decreased to 760 ± 35 MPa, elongation increased from 2.5 ± 0.2% to 2.8 ± 0.3% and decreased to 1.5 ± 0.2, and hardness increased from 55 ± 1 HRC to 57 ± 1 HRC and decreased to 51 ± 1 HRC, respectively. Following heat treatment, the ultimate tensile strength and elongation improved but the general trends of effects of layer thickness remained the same. Practical implications Properties obtained by L-PBF are superior to reported properties of 420 stainless steel fabricated by metal injection molding and comparable to wrought properties. Originality/value This study successfully the sensitivity of mechanical and corrosion properties of the as-printed and heat-treated parts to not only physical density but also microstructure (martensite content and tempering), as a result of changing the layer thickness. This manuscript also demonstrates porosity evolution as a combination of reduced energy flux and lower packing density for parts processed at an increasing layer thickness.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3