Development of a novel supervisory controller on a parallel-hybrid powertrain for small unmanned aerial systems

Author:

Fouellefack Lionel Dongmo,Smith Lelanie,Kruger Michael

Abstract

Purpose A hybrid-electric unmanned aerial vehicle (HE-UAV) model has been developed to address the problem of low endurance of a small electric UAV. Electric-powered UAVs are not capable of achieving a high range and endurance due to the low energy density of its batteries. Alternatively, conventional UAVs (cUAVs) using fuel with an internal combustion engine (ICE) produces more noise and thermal signatures which is undesirable, especially if the air vehicle is required to patrol at low altitudes and remain undetected by ground patrols. This paper aims to investigate the impact of implementing hybrid propulsion technology to improve on the endurance of the UAV (based on a 13.6 kg UAV). Design/methodology/approach A HE-UAV model is developed to analyze the fuel consumption of the UAV for given mission profiles which were then compared to a cUAV. Although, this UAV size was used as reference case study, it can potentially be used to analyze the fuel consumption of any fixed wing UAV of similar take-off weight. The model was developed in a Matlab-Simulink environment using Simulink built-in functionalities, including all the subsystem of the hybrid powertrain. That is, the ICE, electric motor, battery, DC-DC converter, fuel system and propeller system as well as the aerodynamic system of the UAV. In addition, a ruled-based supervisory controlled strategy was implemented to characterize the split between the two propulsive components (ICE and electric motor) during the UAV mission. Finally, an electrification scheme was implemented to account for the hybridization of the UAV during certain stages of flight. The electrification scheme was then varied by changing the time duration of the UAV during certain stages of flight. Findings Based on simulation, it was observed a HE-UAV could achieve a fuel saving of 33% compared to the cUAV. A validation study showed a predicted improved fuel consumption of 9.5% for the Aerosonde UAV. Originality/value The novelty of this work comes with the implementation of a rule-based supervisory controller to characterize the split between the two propulsive components during the UAV mission. Also, the model was created by considering steady flight during cruise, but not during the climb and descend segment of the mission.

Publisher

Emerald

Subject

Aerospace Engineering

Reference70 articles.

1. Ausserer, A. (2012), “Integration, testing, and validation of a small hybrid-electric remotely-piloted aircraft”, Master's Thesis, Air Force Institute of Technology.

2. UIUC propeller database,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An approach of hybrid power and propulsion system design and performance comparison on a long-range compound-wing unmanned aerial vehicle;Eighth International Conference on Energy System, Electricity, and Power (ESEP 2023);2024-05-13

2. Implementation of a Hybrid Power Testbed Model of a Hybrid Electric Unmanned Aerial Vehicle;Drones - Various Applications;2024-02-07

3. Long endurance hybrid propulsion configuration for middle-large size compound-wing VTOL UAV;Third International Conference on Control and Intelligent Robotics (ICCIR 2023);2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3