Design and dynamic analysis of alpha solar rotary mechanism for China Space Station

Author:

Zhu Jinyao,Niu Cong,Chen Jinbao,Wang Chen,Liu Dianfu,Yang Decai

Abstract

Purpose The purpose of this study is to describe the proposed alpha solar rotary mechanism (ASRM) and how it is used to accurately modify the solar array of the China Space Station (CSS) in orbit to maintain continuous tracking of the sun to provide power. It also highlights the need to evaluate the performance of the ASRM and predict potential failure modes in various extreme scenarios. Design/methodology/approach To evaluate the performance of the ASRM, a dynamic model was created and tested under normal and faulty conditions. In addition, a multidirectional stiffness test was conducted on the prototype to verify the accuracy of the ASRM's dynamic model. The high-precision ASRM model was then used to predict potential failure modes and damaged parts in various extreme scenarios. Findings The simulation results were in good agreement with the test results, with a maximum error of less than 8.85%. The high-precision ASRM's model was able to accurately predict potential failure modes and damaged parts in extreme scenarios, demonstrating the effectiveness of the proposed model and simulation evaluation test. Originality/value The proposed high-precision ASRM model and simulation evaluation test provide an effective way to evaluate the structural safety and optimize the design of the spacecraft. This information can be used to improve the performance and reliability of the CSS's solar array and ensure continuous power supply to the station.

Publisher

Emerald

Subject

Aerospace Engineering

Reference21 articles.

1. Analysis of solar panel orientation in low altitude satellites;IEEE Transactions on Aerospace and Electronic Systems,1998

2. ISS solar array alpha rotary joint (SARJ) bearing failure and recovery: technical and project management lessons learned (no. NASA/TP-2011-217116),2011

3. Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge;Composite Structures,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3