Aerodynamic design of gas turbine engine intake duct

Author:

Soemarwoto Bambang I.,Boelens Okko J.,Kanakis Toni

Abstract

Purpose The purpose of this paper is to provide a design solution of an engine intake duct suitable for delivering air to the compressor of a gas turbine engine of a general aviation turboprop aircraft, where the initial duct shape suffers a problem of flow distortion due to flow separation at the compressor inlet. Design/methodology/approach Aerodynamic design uses a three-dimensional inverse-by-optimization approach where the deviation from a desirable target pressure distribution is minimized by means of the adjoint method. Findings By virtue of a minimization algorithm, the specified target pressure distribution does not necessarily have to be fully realizable to drive the initial pressure distribution towards one with a favourable pressure gradient. The resulting optimized engine intake duct features a deceleration region, in a diverging channel, followed by an acceleration region, in a contracting channel, inhibiting flow separation on the compressor inlet plane. Practical implications The flow separation at the compressor inlet has been eliminated allowing proper installation of the engine and flight testing of the aircraft. Originality/value Placement and shaping of the intake duct of a turboshaft and turboprop gas turbine engine is a common industrial problem which can be challenging when the available space is limited. The inverse-by-optimization approach based on a reduced flow model, i.e. inviscid flow based on the Euler equations, and a specification of a simple target pressure distribution constitutes an efficient method to overcome the challenge.

Publisher

Emerald

Subject

Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3