Off-design analysis of the inverted Brayton cycle engine

Author:

Karabacak Mustafa,Turan Onder

Abstract

Purpose The purpose of this study is to perform an off-design analysis of the inverted Brayton cycle engine. Design/methodology/approach The off-design analysis equations of the inverted Brayton cycle engine were first derived in this study and the control parameters of the inverted Brayton cycle engine were first determined and investigated. Findings It is observed that by controlling the total temperature decrease in cooling section, it is possible to adapt the engine for low specific fuel consumption working conditions or high thrust working conditions. Specific fuel consumption is reduced by 27.1 % by stopping cooling in the cooling section and thrust is increased by 27.6 % by working with full load of the cooling section (500 K temperature decrease in cooling section). It is observed that thrust depending on the flight Mach number increases with an increase in flight Mach number and reaches a peak value at 5.21 flight Mach number and reduces by 80.8 % at 6 flight Mach number relative to the peak value. The specific fuel consumption increases rapidly as the Mach number increases, and the specific fuel consumption is 49.0 g/[kN.s] at Mach 1, reaches 70.4 g/[kN.s] at Mach 5 and increases to 412 g/[kN.s] at Mach 6. The specific fuel consumption increases from 68.1 to 73.0 g/(kN.s) and the thrust decreases from 16.5 to 13.3 kN as the total preburner exit temperature increases from 1,500 to 2,000 K. Specific fuel consumption decreases from 83.1 to 64.8 g/(kN.s) and thrust increases from 4.60 to 11.08 kN depending on afterburner exit total temperature increase from 1,800 to 2,500 K. Research limitations/implications The cooling section reduces total temperature of the gas flow to lower values to increase the compressor total pressure ratio. The compressor increases the total pressure of the gas flow to the optimum total pressure ratios to increase the nozzle exit Mach number and gain more thrust. The afterburner increases the total temperature of the gas flow to increase the sound speed in the nozzle exit to increase thrust. The nozzle expands the gas flow to reduce the static pressure of the gas flow to near the optimum value, atmosphere pressure, to increase thrust and reduce specific fuel consumption. Practical implications Hypersonic and supersonic air vehicles can use the current engine model for the its own propulsion systems. Social implications After first heavier than air flight, aero engines was designed for only used for aero vehicle. Internal combustion engines were used for propelled propeller aircraft at the first term of aircraft. However, propeller-propelled aircrafts are not sufficient to increase aircraft velocity to supersonic Mach numbers due to the shock losses of propeller, so the supersonic era was only introduced by revolution in propulsion systems with new concept. A jet engine was developed to be candidate for supersonic flight. Originality/value Off-design analysis equations of an inverted Brayton cycle engine were first derived in this study. Furthermore, the control parameters of the inverted Brayton cycle engine were first determined and investigated in this paper.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3