Impact of process parameters of resistance spot welding on mechanical properties and micro hardness of stainless steel 304 weldments

Author:

Kumar Raman,Chohan Jasgurpreet Singh,Goyal Rohit,Chauhan Piyush

Abstract

PurposeResistance spot welding (RSW) is an essential process in the automobile sector to join the components. The steel is the principal material utilized in car generation because of its high obstruction against erosion, toughness, ease of support and its recuperation potential. Due to this, it was planned to study the mechanical properties, hardness and microstructure characteristics of RSW of Stainless steel 304.Design/methodology/approachIn the present research, RSW of 304 stainless steel plates with 1 mm thickness and effect of current intensity, welding time, electrode pressure and holding time on nugget diameter, tensile strength microhardness and microstructure of the joints was investigated. The specimens were prepared according to the dimensions of 30 × 100 mm with 30 mm overlaps joint through the RSW machine. The tensile test of the specimen was carried out on a universal testing machine and microhardness of specimens measured using Vickers’s hardness tester. Taguchi L16 orthogonal array was used to scrutinize the significant parameters for each output.FindingsIt has been observed that the tensile strength of the specimen is affected by the current intensity and nugget diameter, and the weld time has a significant effect on the tensile strength. Microhardness is highly influenced by electrode pressure and holding time, as the increase in both these parameters resulted in the increase of microhardness. This is due to rapid cooling, which is done by the cooling water flowing through the copper electrodes.Originality/valueThis study was carried out using a copper electrode with a flat face with selected parameters and response factors. The study can be useful for researchers working on optimization of welding parameters on stainless steel.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3