Preparation and tribological properties of SiO2/WO3 nanocomposite lubricant

Author:

Zhang Xiaomeng,Xiong Sang,Gao Feng,Du Jinyuan,Du Qin-Jian

Abstract

Purpose WO3 particles were prepared by the sol-gel method. Tetraethyl silicate (TEOS) was used to obtain a SiO2-coated WO3 nanoparticle. Quantum chemical parameters of oleic acid, triethanolamine, glycerol and methyl pentane as dispersants were theoretically calculated. Tribological properties of SiO2/WO3 nanocomposite lubricant were carried out on an MRS-10A four-ball friction and wear tester. Design/methodology/approach The purpose of this study is to investigate the preparation and tribological properties of SiO2/WO3 nanocomposite lubricant. Findings The obtained SiO2-coated WO3 nanoparticle (nano-SiO2/WO3) with a particle size of about 70 nm. The calculated adsorption energy of triethanolamine on the surface of the steel ball is 554.6 eV, and triethanolamine is selected as the dispersant. The dispersion effect of SiO2/WO3 nanocomposite lubricant is good, which shows that triethanolamine oleate plays a good dispersion role in the preparation of lubricant, which is consistent with the calculation results of the adsorption capacity of dispersant. As a good auxiliary lubricant, SiO2 can improve the tribological properties and wear resistance of WO3. Originality/value Nanocomposite lubricants have been the focus of research in recent years, which could greatly reduce energy consumption. And the SiO2/WO3 exhibited excellent lubrication performance as a lubricant additive. The lubrication mechanism of SiO2/WO3 nanocomposite lubricant is the synergistic lubrication mechanism of friction film lubrication and antifriction bearing. This study could provide a certain reference for the practical application of nanocomposite lubricants.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference23 articles.

1. Tribological properties of diamond nanoparticle additive in water under a lubrication between steel plate and tungsten carbide ball;Journal of Advanced Mechanical Design Systems & Manufacturing,2015

2. Fluorescent core-shell Ag@SiO2 nanocomposite for metal-enhanced fluorescence and single nanoparticle sensing platforms;Journal of the American Chemical Society,2007

3. Preparation characterization and lubrication performances of graphene Oxide-TiO2 nanofluid in rolling strips;Carbon,2018

4. Highly efficient silica coated cuni bimetallic nanocatalyst from reverse microemulsion;Journal of Colloid and Interface Science,2017

5. Wear in cold rolling milling rolls: a methodological approach;Wear,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3