Tribological investigations of boride layers on Ti6Al4V at room and elevated temperatures

Author:

Zhang Dongya,Bai Ao,Du Xin,Li Gang,Wu Jiaoyi

Abstract

Purpose This paper aims to improve the wear resistance of titanium alloy using a high-hardness boride layer, which was fabricated on Ti6Al4V by a high-temperature boronizing process. Design/methodology/approach The boride layers on Ti6Al4V were obtained at 1000°C for 5–15 h. Scanning electron microscopy, energy dispersive analysis and X-ray diffractometer were used to characterize the properties of the boride layer. The tribological performance of the boride layer at room and elevated temperatures was investigated. Findings The X-ray diffraction analysis showed that the boride layers were a dual-phase structure of TiB and TiB2. When the boronizing time increased from 5 h to 15 h, the microhardness increased from 1192 HV0.5 to 1619.8 HV0.5. At 25°C and elevated temperatures, the friction coefficients of the boride layers were higher than that of Ti6Al4V. The wear track areas of T-5 at 200°C and 400°C were 2.5 × 10–3 and 1.1 × 10–3 mm2, respectively, which were 6.1% and 2.6% of that of Ti6Al4V, indicating boride layer exhibited a significant wear resistance. The wear mechanisms of the boride layer transformed from slight peeling to oxidative wear and abrasive wear as the temperature was raised. Originality/value The findings provide an effective strategy for improving the wear resistance of Ti6Al4V and have important implications for the application of titanium alloy in a high-temperature field.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3