Effect of composite solid lubricant coatings on the tribological performance of thrust cylindrical roller bearings

Author:

Xu Xiao,Zhang Yimin

Abstract

Purpose This study aims to form composite solid lubricant coatings on the surface of bearing steel, which can significantly improve the tribological properties of thrust cylindrical roller bearings (TCRBs). Phosphating films possess microscopic porosity that typically needs to be sealed with oil, grease or wax. Due to its unique crystal structure, the phosphating film itself also exhibits a certain degree of lubricity. In this study, solid lubricants are used to fill the pores of the phosphating film. By combining the phosphating film with solid lubricants, lubrication and wear reduction can be achieved. Design/methodology/approach In this study, the surfaces of the shaft washer (WS) and seat washer (GS) were treated with zinc-phosphating. Subsequently, a solid lubricant solution (polytetrafluoroethylene [PTFE], MoS2 and graphite) was sprayed onto the phosphated samples at concentrations of 1 , 2  and 3 g/L. The porous and adsorptive nature of the phosphating film was used to embed the solid lubricant particles into the film, thus forming a composite lubrication layer containing solid lubricants on the surface of the bearing steel. Findings The addition of solid lubricant materials has shown significant potential in reducing wear losses compared with phosphated samples without such additives. Increasing the amount of solid lubricant added can facilitate the formation of a transfer film, which further enhances the protective properties. However, it is important to note that excessive amounts of solid lubricant material can contribute to seizure, leading to increased wear losses of the cage and a higher average coefficient of friction (ACOF).By spraying a PTFE solution with a concentration of 2 g/L, the lowest ACOF and cage wear loss were achieved, resulting in reductions of 60.5% for the ACOF and 89.4% for the cage wear loss. Similarly, when spraying a graphite solution with a concentration of 3 g/L, the lowest wear losses for GS and WS were observed, with reductions of 51.7% for GS wear loss and 38.9% for WS wear loss. Originality/value The combination of the phosphating film and solid lubricants aims to achieve lubrication and wear reduction, providing a new approach to wear-resistant technology for TCRBs. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0231/

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3