Author:
Xie Jing,Bai Shaoxian,Ma Chunhong
Abstract
Purpose
The purpose of this paper is to improve opening performance of bi-directional rotation gas face seals by investigating the hydrodynamic effect of non-closed elliptical grooves.
Design/methodology/approach
A model of non-closed elliptical groove bi-directional rotation gas face seal is developed. The distribution of lubricating film pressure is obtained by solving gas Reynolds equations with the finite difference method. The program iterates repeatedly until the convergence criterion on the opening force is satisfied, and the sealing performance is finally obtained.
Findings
Non-closed elliptical groove presents much stronger hydrodynamic effect than the closed groove because of drop of the gas resistance flowing into grooves. Besides, the non-closed elliptical groove presents significant hydrodynamic effect under bi-directional rotation conditions, and an increase of over 40 per cent is obtained for the opening force at seal pressure 4.5 MPa, as same level as the unidirectional spiral groove gas seal. In the case of bi-directional rotation, the value of the inclination angle is recommended to set as 90° presenting a structure symmetry so as to keep best opening performance for both positive and reverse rotation.
Originality/value
A model of non-closed elliptical groove bi-directional rotation gas face seal is established. The hydrodynamic mechanism of this gas seal is illustrated. Parametric investigation of inclination angle and integrity rate is presented for the non-closed elliptical groove bi-directional rotation gas face seal.
Subject
Surfaces, Coatings and Films,General Energy,Mechanical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献