Study on oil starvation at the oil seal edge of the oil film of hydrostatic bearing with double rectangular cavity

Author:

Ni Shiqian,Zhang Yanqin,Quan Zhen

Abstract

Purpose When the clearance oil film of hydrostatic bearing friction pair is in critical lubrication state, the phenomenon of zero flow of local lubricating oil will aggravate the oil film temperature rise, which needs to be solved. Design/methodology/approach In this paper, the critical lubrication parameter equation and the oil film temperature rise mathematical model are derived for the new type q1-205 double rectangular cavity hydrostatic bearing. Based on a combination of theoretical analysis, simulation and experimental verification, this paper analyzes the flow characteristics and temperature rise characteristics of the lubricating oil when the hydrostatic bearing is in a critical lubrication state under different operating conditions and finally obtains the critical lubrication state of the oil film. Findings This study found that the numerical simulations and the derived formulas agree with the results. When the oil film is in critical lubrication, the cross-section side flow of the oil side is almost zero. The heat cannot be taken away in time, resulting in the local temperature rise of the oil film, which causes serious heat accumulation. Originality/value It is concluded that the operating condition parameters corresponding to the critical lubrication state provide a theoretical basis for the selection of actual hydrostatic bearing operating conditions, which is of great scientific significance.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference16 articles.

1. Orifice compensated multirecess hydrostatic/hybrid journal bearing system of various geometric shapes of recess operating with micro polar lubricant;Tribology International,2011

2. Oil recess structure optimization and flow simulation for heavy hydrostatic bearing;Journal of System Simulation,2010

3. Influence of recess shape on the performance of a capillary compensated circular thrust pad hydrostatic bearing;Tribology International,2002

4. Load capacity analysis of water lubricated hydrostatic thrust bearing based on CFD;Journal of Donghua University (Natural Science),2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3