The investigation of the temperature of high speed and heavy haul tilting pad journal bearing

Author:

Li Pengju,Zhu Yongsheng,Zhang Youyun,Yue Pengfei

Abstract

Purpose – This paper aims to present the theoretical and experimental investigation of the temperature of high speed and heavy haul tilting pad journal bearing. Design/methodology/approach – The bearing is 152.15 mm in diameter with three slenderness ratios (L/D) and three clearance ratios. The equations that govern the flow and energy transport are solved by the finite difference method, and the experimental tests are conducted in a test rig of high speed and heavy haul tilting pad journal bearing. The shaft speed ranges from 3,000 to 16,500 r/min (the highest linear-velocity equals 131.4 m/s), and the three static loads are 10, 20 and 30 KN. Findings – The comparisons between numerical results and experimental results show better correlations. It is shown in the theoretical and experimental results that the temperature increases with static load and shaft speed and decreases with clearance ratio and L/D. Originality/value – The theoretical models presented in this paper can be used to predict the temperature of tilting pad journal bearing when the shaft’s linear velocity is up to 130 m/s.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of experiments and simulations of thermal characteristics of a bearing-rotor system;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2023-03-16

2. Inclination angle effect of tribological performance for hydrostatic bearing having tilting oil pad under variable viscosity conditions;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2021-04

3. Fault diagnosis of journal bearing in a hydropower plant using wear debris, vibration and temperature analysis: A case study;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2020-03-05

4. Influence of temperature – viscosity effect on ring-journal speed ratio and stability for a hydrodynamic floating ring bearing;Industrial Lubrication and Tribology;2019-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3