Author:
Kaur Lakhveer,Wazwaz Abdul-Majid
Abstract
Purpose
The purpose of this paper is to explore new reduced form of the (3 + 1)-dimensional generalized B-type Kadomtsev-Petviashvili (BKP) equation by considering its bilinear equations, derived from connection between the Hirota’s transformation and Bell polynomials.
Design/methodology/approach
Based on the bilinear form of new reduced form of the (3 + 1)-dimensional generalized BKP equation, lump solutions with sufficient and necessary conditions to guarantee analyticity and rational localization of the solutions are discovered. Also, extended homoclinic approach is applied to considered equation for finding solitary wave solutions.
Findings
A class of the bright-dark lump waves are fabricated for studying different attributes of (3 + 1)-dimensional generalized BKP equation and some new exact solutions including kinky periodic solitary wave solutions and line breathers periodic are also obtained by Following the extended homoclinic approach.
Research limitations/implications
The paper presents that the implemented methods have emerged as a promising and robust mathematical tool to manage (3 + 1)-dimensional generalized BKP equation by using the Hirota’s bilinear equation.
Practical implications
By considering important characteristics of lump and solitary wave solutions, one can understand the shapes, amplitudes and velocities of solitons after the collision with another soliton.
Social implications
The analysis of these higher-dimensional nonlinear wave equations is not only of fundamental interest but also has important practical implications in many areas of mathematical physics and ocean engineering.
Originality/value
To the best of the authors’ knowledge, the acquired solutions given in various cases have not been reported for new reduced form of the (3 + 1)-dimensional generalized BKP equation in the literature. These obtained solutions are advantageous for researchers to know objective laws and grab the indispensable features of the development of the mathematical physics.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献