Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation

Author:

Kaur Lakhveer,Wazwaz Abdul-Majid

Abstract

Purpose The purpose of this paper is to explore new reduced form of the (3 + 1)-dimensional generalized B-type Kadomtsev-Petviashvili (BKP) equation by considering its bilinear equations, derived from connection between the Hirota’s transformation and Bell polynomials. Design/methodology/approach Based on the bilinear form of new reduced form of the (3 + 1)-dimensional generalized BKP equation, lump solutions with sufficient and necessary conditions to guarantee analyticity and rational localization of the solutions are discovered. Also, extended homoclinic approach is applied to considered equation for finding solitary wave solutions. Findings A class of the bright-dark lump waves are fabricated for studying different attributes of (3 + 1)-dimensional generalized BKP equation and some new exact solutions including kinky periodic solitary wave solutions and line breathers periodic are also obtained by Following the extended homoclinic approach. Research limitations/implications The paper presents that the implemented methods have emerged as a promising and robust mathematical tool to manage (3 + 1)-dimensional generalized BKP equation by using the Hirota’s bilinear equation. Practical implications By considering important characteristics of lump and solitary wave solutions, one can understand the shapes, amplitudes and velocities of solitons after the collision with another soliton. Social implications The analysis of these higher-dimensional nonlinear wave equations is not only of fundamental interest but also has important practical implications in many areas of mathematical physics and ocean engineering. Originality/value To the best of the authors’ knowledge, the acquired solutions given in various cases have not been reported for new reduced form of the (3 + 1)-dimensional generalized BKP equation in the literature. These obtained solutions are advantageous for researchers to know objective laws and grab the indispensable features of the development of the mathematical physics.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3