Corrosion performance and morphological analysis of activated zinc phosphate coating formed on steel surface

Author:

Abdalla Khalid,Zuhailawati Hussain

Abstract

Purpose The purpose of this paper is to study the effect of different concentrations of pretreatment solution of copper acetate (1, 5 and 10 g/L) on the deposition, growth and protection ability of zinc phosphate coating. Design/methodology/approach Zinc phosphate coatings were deposited on steel surface by immersion method. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were used to study the morphological evolution and chemical analysis of formed coatings. The electrochemical performance of the coatings was evaluated via potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS) and immersion test in an aerated 3.5% NaCl solution. Findings The results showed that the activation treatment accelerated the deposition of the phosphate coating and improved its surface coverage. A higher phosphate coating weight (7.35 g/m2) and more compact structure was obtained with pretreatment solution of 1 g/L copper acetate. Electrochemical results revealed that the protection ability of the phosphated substrates was markedly enhanced after the pretreatment, and the best corrosion protection was obtained with a concentration of 1 g/L copper acetate solution. The corrosion current density of phosphated substrate was reduced by 64.9% after activation treatment with 1 g/L copper acetate solution. Originality/value In this investigation, dense, stable and compact zinc phosphate layers with improved corrosion resistance were formed on a carbon steel surface after activation pretreatment with copper acetate solution prior to a phosphating step.

Publisher

Emerald

Subject

General Materials Science,General Chemical Engineering

Reference32 articles.

1. Effect of copper (II) acetate pretreatment on zinc phosphate coating morphology and corrosion resistance;Journal of Coatings Technology and Research,2013

2. Activation of zinc phosphate coating by silver nitrate pretreatment;Surface Engineering,2017

3. Characteristics of zinc phosphate coating activated by different concentrations of nickel acetate solution;Metallurgical and Materials Transactions A,2017

4. A low temperature nano TiO2 incorporated nano zinc phosphate coating on mild steel with enhanced corrosion resistance;Materials Today: Proceedings,2018

5. Materials: engineering, science, processing and design, Butterworth-Heinemann,2009

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3