Author:
Quej-Ake L.M.,Marín-Cruz J.,Contreras A.
Abstract
Purpose
The purpose of this paper was to study the corrosion process of API X52, X60, X65, X70 and X80 steels exposed to two clay soils collected in two states of Mexico (Tabasco and Campeche). To saturate the soils, 60 mL of deionized water was added to simulate the conditions for dry and wet season, due to in field, the climate change could modifies the physicochemical properties of the soils for each season of the year and this generate a variable environment, which affect the electrochemical responses on steel–soil interface.
Design/methodology/approach
The corrosion evaluation was carried out simulating the conditions of deteriorated coating (bare steel); this includes steel surface exposed to clay soil affected by seasonal fluctuations in a tropical zone. These soils were characterized, without any further treatment as were found in the field (dry season). Moreover, some samples were taken and prepared to analyze in laboratory. For each soil sample, 60 mL of deionized water was added to simulate the rainy season (saturated soils). Electrochemical evaluations were carried out after 3 h of exposure time at room temperature. Because soil is a system with high resistivity and impedance, it is necessary to carry out IR-drop compensation using two platinum rods that were used as an auxiliary electrode. In addition, the IR-drop correction obtained from the experimental potentiodynamic curves was investigated.
Findings
In clay from Campeche (Clay-C), the more susceptible steel to corrosion was X65, whereas in clay from Tabasco (Clay-T), the more susceptible steel to corrosion was X80 steel. Electrochemical results show that despite higher-degree steels providing higher strength and hardness, the order of corrosion susceptibility is random, which can be attributed to different microstructures in the steels. The complexity of the corrosion process on five steels was evident when steel samples were exposed to different soils. The higher corrosion rate was obtained in X65 steel (0.5 mm/year).
Practical implications
The paper clearly identifies any implication for the research.
Originality/value
The electrochemical responses of different steels exposed in two types of clay soil explained the corrosion complexity that can be attributed to changes in physicochemical properties of the soils, which are because of changes in seasons (dry and rainy) and the microstructure of each steel related to the process of fabrication. Suggesting that the increase in mechanical properties such as hardness and resistance of the pipeline steels could not be associated with its corrosion resistance, the corrosion susceptibility is more dependent on the microstructure of the steels.
Subject
General Materials Science,General Chemical Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献