Author:
Niu Chengchang,Deng Shiqing,Yan Yu,Wu Leigang,Tao Ran,Chen Jun
Abstract
Purpose
The purpose of this paper is to fill the knowledge gap in the microscopic origin of high corrosion resistance in the passivated 316 L stainless steel.
Design/methodology/approach
Here, the pitting corrosion potential of the passivated 316 L stainless steel is measured, as well as the non-passivated one. Using the aberration-corrected scanning transmission electron microscopy, the microstructure of the passive film is unambiguously revealed. Combining the electron energy loss spectroscopy with the X-ray photoelectron spectroscopy, the depth profiling analysis is conducted and the variations in composition from the very surface of the passive film to the internal steel are clarified.
Findings
By optimizing the passivation treatment process, the authors significantly increase the pitting corrosion potential of the passivated 316 L stainless steel by 300 mV, compared with the non-passivated one. The passive film features a unique amorphous multilayer structure. On the basis of the depth profiling analysis, the origin of the high corrosion resistance achieved is unraveled, in which the redistribution of elements in the multilayer passive film, especially the enrichment of Cr in the topmost layer and Ni at the film-metal interface, prevent the oxidization of the inner iron of the steel.
Originality/value
This study advances understanding of the nature of the passive film from a microscopic view, which can be helpful for the further improvement of the corrosion resistance performance.
Graphical Abstract
This study introduces a model for the multilayer structure of passive films that reveals the reconstitution of the passive films after the opportune passivation treatments. Due to the redistribution of elements caused by passivation, the enrichment of Cr in the outer layer and Ni near the film-metal interface leads to enhance corrosion resistance performance.
Subject
General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献