Indoor air quality prediction modeling for a naturally ventilated fitness building using RNN-LSTM artificial neural networks

Author:

Karaiskos PanagiotisORCID,Munian YuvarajORCID,Martinez-Molina AntonioORCID,Alamaniotis MiltiadisORCID

Abstract

PurposeExposure to indoor air pollutants poses a significant health risk, contributing to various ailments such as respiratory and cardiovascular diseases. These unhealthy consequences are specifically alarming for athletes during exercise due to their higher respiratory rate. Therefore, studying, predicting and curtailing exposure to indoor air contaminants during athletic activities is essential for fitness facilities. The objective of this study is to develop a neural network model designed for predicting optimal (in terms of health) occupancy intervals using monitored indoor air quality (IAQ) data.Design/methodology/approachThis research study presents an innovative approach employing a long short-term memory (LSTM) recurrent neural network (RNN) to determine optimal occupancy intervals for ensuring the safety and well-being of occupants. The dataset was collected over a 3-month monitoring campaign, encompassing 15 meteorological and indoor environmental parameters monitored. All the parameters were monitored in 5-min intervals, resulting in a total of 77,520 data points. The dataset collection parameters included the building’s ventilation methods as well as the level of occupancy. Initial preprocessing involved computing the correlation matrix and identifying highly correlated variables to serve as inputs for the LSTM network model.FindingsThe findings underscore the efficacy of the proposed artificial intelligence model in forecasting indoor conditions, yielding highly specific predicted time slots. Using the training dataset and established threshold values, the model effectively identifies benign periods for occupancy. Validation of the predicted time slots is conducted utilizing features chosen from the correlation matrix and their corresponding standard ranges. Essentially, this process determines the ratio of recommended to non-recommended timing intervals.Originality/valueHumans do not have the capacity to process this data and make such a relevant decision, though the complexity of the parameters of IAQ imposes significant barriers to human decision-making, artificial intelligence and machine learning systems, which are different. Present research utilizing multilayer perceptron (MLP) and LSTM algorithms for evaluating indoor air pollution levels lacks the capability to predict specific time slots. This study aims to fill this gap in evaluation methodologies. Therefore, the utilized LSTM-RNN model can provide a day-ahead prediction of indoor air pollutants, making its competency far beyond the human being’s and regular sensors' capacities.

Publisher

Emerald

Reference67 articles.

1. CFD simulation of flow in a long street canyon under a perpendicular wind direction: evaluation of three computational settings;Building and Environment,2017

2. Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: a controlled exposure study of green and conventional office environments;Environmental Health Perspectives,2015

3. Airplane pilot flight performance on 21 maneuvers in a flight simulator under varying carbon dioxide concentrations;Journal of Exposure Science and Environmental Epidemiology 2018 29:4,2018

4. American Lung Association (2021), “State of the air”, available at: https://www.lung.org/getmedia/17c6cb6c-8a38-42a7-a3b0-6744011da370/sota-2021 (accessed 7 November 2022).

5. ASHRAE STANDARD ASHRAE STANDARD Ventilation for Acceptable Indoor Air Quality;A.-C.E.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3