Competitive advantage through Six Sigma in sand casting industry to improve overall first-pass yield: a case study of SSE

Author:

Solanki Mihir,Desai Darshak

Abstract

Purpose The purpose of this paper is to illustrate how Six Sigma methodology has been applied in a small-scale foundry industry to improve the overall first-pass material yield and quality, with a view to the product and the process. Design/methodology/approach The researchers have reported this paper based on a case study carried out in industry using the Six Sigma Define, Measure, Analyze, Improve and Control (DMAIC) and its application in improving the manufacturing process of a foundry shop. Findings Identified root causes are validated and countermeasures are implemented for improvement. As a result of this case study, the overall first-pass yield of the sand casting process is improved to 78.88% from the previous yield of 67%. For product-specific case, yield is improved by 18% through the improved gating system design. Sigma level of the process is improved to 3.08 from baseline 2.21. Key lessons learned from this case study are mentioned in the current study. Research limitations/implications This case study provides a standard road map and motivates small-scale foundry industries to implement Six Sigma methodology for productivity improvement, especially in jobbing foundry. The presented paper is based on a single case study, and the results are limited to the company only. Also, one of the reasons for low process yield is slag creation, which is not covered here, as it is a concern of the material quality supplied by the vendor. However, the approach of this paper is generic for learning perspective. Practical implications This case study provides a standard road map and motivates small-scale foundry industries to implement Six Sigma methodology for productivity improvement, especially in jobbing foundry. Through the effective application of Six Sigma quality initiative, how a quantum jump in financial aspect could be gain, has been demonstrated. Originality/value This research study showcases step-by-step implementation of Six Sigma-DMAIC methodology at a small-scale foundry industry. This paper could serve as a unique roadmap for practitioners and academicians to improve the material productivity of the foundry industry both ways, product and process.

Publisher

Emerald

Reference39 articles.

1. Shrinkage prediction of injection molded high density polyethylene parts with Taguchi/artificial neural network hybrid experimental design;International Journal on Interactive Design and Manufacturing,2019

2. Similarities and differences between TQM, six sigma and lean;The TQM Magazine,2006

3. Six sigma vs TQM: some perspectives from leading practitioners and academics;International Journal of Productivity and Performance Management,2009

4. Case study in six sigma methodology: manufacturing quality improvement and guidance for managers;Production Planning and Control,2012

5. An empirical study into the limitations and emerging trends of six sigma: findings from a global survey;IEEE Transactions on Engineering Management.,2020

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3