Mining Arabic Twitter conversations on health care: a new approach to analysing Arabic language on social media

Author:

Alqtati Nael,Wilson Jonathan A.J.,De Silva Varuna

Abstract

Purpose This paper aims to equip professionals and researchers in the fields of advertising, branding, public relations, marketing communications, social media analytics and marketing with a simple, effective and dynamic means of evaluating consumer behavioural sentiments and engagement through Arabic language and script, in vivo. Design/methodology/approach Using quantitative and qualitative situational linguistic analyses of Classical Arabic, found in Quranic and religious texts scripts; Modern Standard Arabic, which is commonly used in formal Arabic channels; and dialectical Arabic, which varies hugely from one Arabic country to another: this study analyses rich marketing and consumer messages (tweets) – as a basis for developing an Arabic language social media methodological tool. Findings Despite the popularity of Arabic language communication on social media platforms across geographies, currently, comprehensive language processing toolkits for analysing Arabic social media conversations have limitations and require further development. Furthermore, due to its unique morphology, developing text understanding capabilities specific to the Arabic language poses challenges. Practical implications This study demonstrates the application and effectiveness of the proposed methodology on a random sample of Twitter data from Arabic-speaking regions. Furthermore, as Arabic is the language of Islam, the study is of particular importance to Islamic and Muslim geographies, markets and marketing. Social implications The findings suggest that the proposed methodology has a wider potential beyond the data set and health-care sector analysed, and therefore, can be applied to further markets, social media platforms and consumer segments. Originality/value To remedy these gaps, this study presents a new methodology and analytical approach to investigating Arabic language social media conversations, which brings together a multidisciplinary knowledge of technology, data science and marketing communications.

Publisher

Emerald

Subject

Marketing

Reference81 articles.

1. Fast, consistent tokenization of natural language text;Journal of Open Source Software,2018

2. Samar: subjectivity and sentiment analysis for Arabic social media;Computer Speech and Language,2014

3. Mining Text Data

4. Emerging markets and international business: a research agenda;Thunderbird International Business Review,2005

5. Processing the text of the holy Quran: a text mining study;International Journal of Advanced Computer Science and Applications,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3