Author:
Shao Chunlei,Zhang Zhongyuan,Zhou Jianfeng
Abstract
Purpose
The purpose of this paper is to accurately predict the cavitation performance of a cryogenic pump and reveal the influence of the inlet pressure, the surface roughness and the flow rate on the cavitation performance.
Design/methodology/approach
Firstly, the Zwart cavitation model was modified by considering the thermodynamic effect. Secondly, the feasibility of the modified model was validated by the cavitation test of a hydrofoil. Thirdly, the effects of the inlet pressure, the surface roughness and the flow rate on cavitation flow in the cryogenic pump were studied by using the modified cavitation model.
Findings
The modified cavitation model can predict the cavitation performance of the cryogenic pump more accurately than the Zwart cavitation model. The thermodynamic effect inhibits cavitation development to a certain extent. The higher the vapor volume fraction, the lower the pressure and the lower the temperature. At the initial stage of the cavitation, the head increases first and then decreases with the increase of the roughness. When the cavitation develops to a certain degree, the head decreases with the increase of the roughness. With the decrease of the flow rate, the hydraulic loss increases and the cavitation at the impeller intensifies.
Originality/value
A cavitation model considering the thermodynamic effect is proposed. The mechanism of the influence of the roughness on the performance of the cryogenic pump is revealed from two aspects. Taking the hydraulic loss as a bridge, the relationships among flow rates, vapor volume fractions, streamlines, temperatures and pressures are established.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献