CFD-based blade shape optimization of MGT-70(3)axial flow compressor

Author:

Pakatchian Mohammad Reza,Saeidi Hossein,Ziamolki Alireza

Abstract

Purpose This study aims at enhancing the performance of a 16-stage axial compressor and improving the operating stability. The adopted approaches for upgrading the compressor are artificial neural network, optimization algorithms and computational fluid dynamics. Design/methodology/approach The process starts with developing several data sets for certain 2D sections by means of training several artificial neural networks (ANNs) as surrogate models. Afterward, the trained ANNs are applied to the 3D shape optimization along with parametrization of the blade stacking line. Specifying the significant design parameters, a wide range of geometrical variations are considered by implementation of appropriate number of design variables. The optimized shapes are analyzed by applying computational fluid dynamic to obtain the best geometry. Findings 3D optimal results show improvements, especially in the case of decreasing or elimination of near walls corner separations. In addition, in comparison with the base geometry, numerical optimization shows an increase of 1.15 per cent in total isentropic efficiency in the first four stages, which results in 0.6 per cent improvement for the whole compressor, even while keeping the rest of the stages unchanged. To evaluate the numerical results, experimental data are compared with obtained data from simulation. Based on the results, the highest absolute relative deviation between experimental and numerical static pressure is approximately 7.5 per cent. Originality/value The blades geometry of an axial compressor used in a heavy-duty gas turbine is optimized by applying artificial neural network, and the results are compared with the base geometry numerically and experimentally.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference40 articles.

1. Multi objective optimization of performance of three-heat-source irreversible refrigerators based algorithm NSGAII;Renewable and Sustainable Energy Reviews, Pergamon,2016

2. Exergetic sustainability evaluation and optimization of an irreversible Brayton cycle performance,2017

3. Performance assessment and optimization of an irreversible nano-scale sterling engine cycle operating with Maxwell-Boltzmann gas;European Physical Journal Plus,2015

4. Connectionist intelligent model estimates output power and torque of sterling engine;Renewable and Sustainable Energy Reviews,2015

5. A review on pulsating heat pipes: from solar to cryogenic applications;Applied Energy,2018

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3