Numerical identification of temperature dependent thermal conductivity using least squares method

Author:

Ivanova Anna,Migorski Stanislaw,Wyczolkowski Rafal,Ivanov Dmitry

Abstract

Purpose This paper aims to considered the problem of identification of temperature-dependent thermal conductivity in the nonstationary, nonlinear heat equation. To describe the heat transfer in the furnace charge occupied by a homogeneous porous material, the heat equation is formulated. The inverse problem consists in finding the heat conductivity parameter, which depends on the temperature, from the measurements of the temperature in fixed points of the material. Design/methodology/approach A numerical method based on the finite-difference scheme and the least squares approach for numerical solution of the direct and inverse problems has been recently developed. Findings The influence of different numerical scheme parameters on the accuracy of the identified conductivity coefficient is studied. The results of the experiment carried out on real measurements are presented. Their results confirm the ones obtained earlier by using other methods. Originality/value Novelty is in a new, easy way to identify thermal conductivity by known temperature measurements. This method is based on special finite-difference scheme, which gives a resolvable system of algebraic equations. The results sensitivity on changes in the method parameters was studies. The algorithms of identification in the case of a purely mathematical experiment and in the case of real measurements, their differences and the practical details are presented.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference41 articles.

1. Determination of thermal diffusivity from experimental data;Journal of Engineering Physics and Thermophysics,1975

2. Determination of the temperature-dependent variation of the thermal conductivity of a composite material from the data of a nonstationary experiment;Journal of Engineering Physics and Thermophysics,1983

3. Standard practice for using a Guarded-Hot-Plate apparatus or Thin-Heater apparatus in the Single-Sided mode;ASTM C1044-12,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3