Prediction of the minimum fluidization velocity of different biomass types by artificial neural networks and empirical correlations

Author:

Matos Thenysson,Perazzini Maisa Tonon Bitti,Perazzini Hugo

Abstract

Purpose This paper aims to analyze the performance of artificial neural networks with filling methods in predicting the minimum fluidization velocity of different biomass types for bioenergy applications. Design/methodology/approach An extensive literature review was performed to create an efficient database for training purposes. The database consisted of experimental values of the minimum fluidization velocity, physical properties of the biomass particles (density, size and sphericity) and characteristics of the fluidization (monocomponent experiments or binary mixture). The neural models developed were divided into eight different cases, in which the main difference between them was the filling method type (K-nearest neighbors [KNN] or linear interpolation) and the number of input neurons. The results of the neural models were compared to the classical correlations proposed by the literature and empirical equations derived from multiple regression analysis. Findings The performance of a given filling method depended on the characteristics and size of the database. The KNN method was superior for lower available data for training and specific fluidization experiments, like monocomponent or binary mixture. The linear interpolation method was superior for a wider and larger database, including monocomponent and binary mixture. The performance of the neural model was comparable with the predictions of the most well-known correlations from the literature. Originality/value Techniques of machine learning, such as filling methods, were used to improve the performance of the neural models. Besides the typical comparisons with conventional correlations, comparisons with three main equations derived from multiple regression analysis were reported and discussed.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3