Failure analysis of an aluminum extrusion aircraft wing component

Author:

Stamoulis Konstantinos,Panagiotopoulos Dimitrios,Pantazopoulos George,Papaefthymiou Spyros

Abstract

Purpose The purpose of this paper is to deal with the failure analysis of a fractured spar stiffener, extruded from 7075-T6 aluminum alloy, which was found in the central wing, trailing edge structure of a military transport aircraft. The previous loading history and the dominant environmental factors (corrosive and humid atmosphere, water entrapment, etc.) suggest corrosion and fatigue as the principal failure modes, synergistically acting on the wing component. Design/methodology/approach This study presents the failure analysis concentrated on finding evidence of failure mechanisms and plausible root-cause(s) of the fractured spar stiffener. Chemical analysis, stereo and scanning electron microscopy, as well as finite element analysis employed as the main analytical tools for material characterization and failure investigation. Findings The overall evaluation of the findings suggest that the failure caused by a synergy of two mechanisms; a crack initiated in the longitudinal, extrusion direction by an environmentally assisted corrosion attack, then propagated by the superimposed transverse stress field, branched/deflected due to a low crack driving force and extended in a transverse path through a high cycle fatigue process. Finally, the complete fracture occurred as fast fracture, resulted by a ductile overload. Originality/value This paper deals with an industrial damage case study, providing analysis and modeling from structural engineering standpoint. The aforementioned findings concerning the fractured aircraft component allow gaining a deeper knowledge about the mechanisms of crack initiation and propagation which, in turn, can produce a valuable feedback to design, inspection and maintenance procedures. This includes a modified heat treatment from T6 to T73 temper for the redesigned component.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference18 articles.

1. An unusual failure of a nickel-aluminium bronze (NAB) hydraulic valve;Engineering Failure Analysis,2015

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3